DEPARTMENT OF BIOTECHNOLOGY				CLASS: I B.Sc. Biotechnology				
Sem	Course Type	Course Code	Course Title	Credits Contact Hours/week CIA Ext			Total	
II	Core-4	20U2LMC4	Bioinstrumentation	3	3	25	75	100

Course Objectives

- 1. To introduce students to various analytical instrumentation used in biotechnology labs.
- 2. To understand the physical principles of emerging bio-analytical techniques.
- 3. To identify and interpret results of bio-analytical techniques.
- 4. To critically assess the advances in the field of bio-analytical chemistry

Unit-I: Microscopy

Microscopy: Introduction –magnification, resolving power and numerical aperture and types - bright field, dark field, Phase contrast, Fluorescence, Polarising microscopy; Electron microscopy- SEM and TEM.

Unit-II: pH meter and Centrifuge

pH meter: Principle, working and applications. Centrifuge: Basic principles of Sedimentation- types of centrifuges and types of rotors. Mechanism of diffusion and sedimentation.

Unit-III: Colorimetry and Spectroscopy

Colorimetry: Beer - Lambert's Law – principle and applications; Spectrophotometry - UV, Visible, Fluorescence and Infrared spectroscopy –principle, instrumentation and applications.

Unit-IV: Chromatography

Chromatography: Paper Chromatography; Thin layer Chromatography; Gas chromatography, ion exchange, High pressure Liquid Chromatography- principle, instrumentation and applications.

Unit-V: Electrophoresis and Radio-activity

Electrophoresis: Types-moving boundary and zone electrophoresis. Techniques and applications of Agarose gel electrophoresis, native PAGE, SDS-PAGE- principle, instrumentation and applications. Radio isotope techniques: natural radiations, nature of radioactivity – Detection and measurement of radioactivity – Geiger-Muller counter– Autoradiography Applications of radioisotopes in Biological sciences – Hazards and containment of radioactivity.

Books for Study

- 1. Jeyaraman J. 1985. Laboratory Manual in Biochemistry. Wiley Eastern Limited, New Delhi.
- Plummer D. 1987. An Introduction to Practical Biochemistry. Tata McGraw Hill Publishing Company Ltd., New Delhi.
- 3. Veerakumari L. 2009. Bioinstrumentation. MJP publishers.

Books for Reference

- 1. Wilson, K and Walker, J, Principles and Techniques of Practical Biochemistry, 1995, Cambridge University Press, New York.
- 2. Boyer, R.F., Modern Experimental Biochemistry, 1993, The Benjamin / Cummings Publishing Company, Inc., New York.
- 3. Switzer RL, Garrity LF. 1999. Experimental Biochemistry. W. H. Freeman and Co.

Web Resources

1. http://nptel.ac.in

2. <u>http://swayam.gov.in</u>

Pedagogy

The teaching methods may include Chalk and talk, PowerPoint, Assignments and group discussions, Problem solving

Course Learning Outcomes

On completion of this course the students will be able to

#	CLOs	K - Level	
CIO1	Explain the principle, components and application of different types of	Up to K-2	
CLO I	microscopes.	0p 10 K 2	
CI 0-2	Infer the principle, working and applications of different centrifuges and pH	Up to K-4	
	meter	0p 10 K-4	
CLO 3	Apply the concept of electromagnetic radiation, absorption spectrum, Beer's	Up to K-3	
010.2	-Lambert's law and verification of the law.	op to R 5	
CI 0-4	Analyse various chromatographic techniques by its working principle and	Up to K-4	
CLO-4	applications	0p 10 K 4	
CLO-5	Categorize the various electrophoretic techniques and radioactivity	Up to K-4	
	measurements	0p 10 K-4	

Mapping of Course outcomes with Program specific Outcomes:

CLO/PSO	PSO-1	PSO-2	PSO-3	PSO-4	PSO-5	PSO-6	PSO-7
CLO-1	3	3	3	3	1	3	
CLO-2	3	1	2	1	1	3	
CLO-3	3	3	1	3	1	3	
CLO-4	3	3	2	2	2	3	
CLO-5	3	3	2	3	3	3	

Advance application-3; Intermediate level-2; Basic level-1

Mapping of Course learning outcomes with Program Outcomes:

CO/PSO	PO-1	PO-2	PO-3	PO-4	PO-5
CLO-1	3	2	2	2	3
CLO-2	3	2		2	3
CLO-3	3	3	1		
CLO-4	3	3	2		
CLO-5	3	3	2		

Advance application-3; Intermediate level-2; Basic level-1

LESSON PLAN – BIOINSTRUMENTATION

Unit	Description	Staff Name	Hours	Mode
	Microscopy: Introduction – magnification, resolving power and numerical aperture and types - bright field, dark field.		3	Chalk and talk Demonstration
UNIT - I	Phase contrast, Fluorescence, Polarising microscopy.		3	Chalk and talk PPT
	Electron microscopy- SEM and TEM.		3	Chalk and talk
	pH meter: Principle, working and applications		2	Chalk and talk Demonstration
UNIT - II	Centrifuge: Basic principles of Sedimentation- types of centrifuges and types of rotors. Mechanism of diffusion and sedimentation.		7	Chalk and talk Demonstration
	Colorimetry: Beer - Lambert's Law – principle and applications.		3	Chalk and talk Demonstration
UNIT - III	Spectrophotometry: UV-Visible, Fluorescence and Infrared spectroscopy –principle, instrumentation and applications.		6	Chalk and talk PPT
	Chromatography: Paper Chromatography; Thin layer Chromatography- principle, instrumentation and applications.		3	Chalk and talk Demonstration
Unit-IV	Gas chromatography, ion exchange, High pressure Liquid Chromatography- principle, instrumentation and applications.		3	Chalk and talk PPT
	High pressure Liquid Chromatography- principle, instrumentation and applications		3	Chalk and talk
	Electrophoresis: Types-moving boundary and zone electrophoresis. Techniques and applications of Agarose gel electrophoresis, native PAGE, SDS- PAGE- principle, instrumentation and applications.		5	Chalk and talk Demonstration
UNIT - V	Radio isotope techniques: The nature of radioactivity- natural radiation – Detection and measurement of radioactivity, GM counter. Autoradiography Applications of radioisotopes in Biological sciences. Hazards and containment of radioactivity		4	Chalk and talk
	~		45	

Learning Outcome Based Education & Assessment (LOBE) Blue Print – Bioinstrumentation Course

						0	· /	
c	CLOs	K-Level	Section A MCQs		Section B Short Answers		Section C	Section D
No.							(Eithon / on	Section D
			No. of Questions	K-Level	No. of Questions	K-Level	Choice)	Choice)
1.	CLO 1	Up to K 3	2	K1 & K2	1	K1	2 (K1&K1)	1(K2)
2.	CLO 2	Up to K 4	2	K1 & K2	1	K1	2 (K2&K2)	1(K3)
3.	CLO 3	Up to K 4	2	K1 & K2	1	K2	2 (K3&K3)	1(K3)
4.	CLO 4	Up to K 2	2	K1 & K2	1	K2	2 (K4&K4)	1(K3)
5.	CLO 5	Up to K 4	2	K1 & K2	1	K2	2 (K3&K3)	1(K4)
No. of Questions to be asked		10		5		10	5	
No. answ	of Quest ered	ions to be	10		5		5	3
Marks for each Question		1		2		5	10	
Total Marks for each Section		10		10		25	30	

Articulation Mapping – K Levels with Courses Learning Outcomes (CLOs)

Distribution of Section-wise Marks with K Levels

K Levels	Section A (No Choice)	Section B (No Choice)	Section C (Either/or)	Section D (Open Choice)	Total Marks	% of Marks without choice	Consolidated
K1	5	4	10	-	19	15.83	420/
K2	5	6	10	10	31	25.83	42%
K3	-	-	20	30	50	41.67	42%
K4	-	-	10	10	20	16.67	16%
Total Marks	10	10	50	50	120	100.00	100%

Distribution of Unit-wise questions with K Levels

Section A	Section B	Section C	Section D
		2 Questions from Unit-I (K1	1Question from
	1 Question from each Unit (K1 & K2 Level)	Level)	Unit-I (K2 Level)
		2 Questions from	1Question from
		Unit-II (K2 Level)	Unit-II (K3 Level)
2 Questions for each Unit		2 Questions from Unit-III (K3	1Question from
(K1 & K2 Level)		Level)	Unit-IV (K3 Level)
		2 Questions from Unit-IV (K4	1Question from
		Level)	Unit-III (K3 Level)
		2 Questions from Unit-V (K3	1Question from
		Level)	Unit-V (K4 Level)

- K1 –Remembering and recalling facts with specific answers
- K2 Basic understanding of facts and stating main ideas with general answers
- K3 Application oriented Solving Problems
- K4 Examining, analyzing, presentation and make interferences with evidences

Course content designed by Ms. R. Suguna